ISO 13426 geocells tensile testing machine

100KN computer control testing machine_页面_01.jpg100KN computer control testing machine_页面_02.jpg100KN computer control testing machine_页面_04.jpg100KN computer control testing machine_页面_06.jpg100KN computer control testing machine_页面_07.jpg100KN computer control testing machine_页面_08.jpg

china ISO 13426 100kn 50kn 10T 5T chinese tensile testing standard JIS Z2241 EN 10002 metallic materials tensile test ASTM C39 concrete compression testing machine equipment instrument tester price factory manufacturer supplier vendor

touchscreen interface tensile machine, UTM with environmental chamber, portable universal testing machine, high-speed data acquisition system, low-noise electromechanical drive, multi-axis testing capabilities, UTM with integrated video extensometer

How to Select the Right Tensile, Compression, Bending, Shear, Peel, and Tear Testing Machine: Calculation Formulas with Examples

Selecting the appropriate testing machine for tensile, compression, bending, shear, peel, and tear tests requires careful consideration of multiple factors, including the force range, specimen dimensions, test standards, and machine capabilities. Below are the key calculation formulas to help determine the necessary machine specifications, along with examples for better understanding.

1. Tensile Testing Machine Selection

Tensile testing machines measure the maximum tensile strength and elongation of materials.

Key Formula:

Fmaxmax × A

Where:

Fmax = Maximum required force (N)

σmax = Ultimate tensile strength of the material (MPa)

A = Cross-sectional area of the specimen (mm²)

Example: For a steel specimen with σmax =400MPa and cross-sectional area A =100mm²:

Fmax=400 × 100=40,000N (40kN)

A 50 kN tensile testing machine would be suitable.

 

2. Compression Testing Machine Selection

Compression tests determine a material's resistance to compressive forces.

Key Formula:

Fmaxc × A

 

Where:

Fmax = Maximum required force (N)

σc = Compressive strength of the material (MPa)

A = Cross-sectional area of the specimen (mm²)

Example: For a concrete cube with σc =30MPa and A =1502=22,500mm²:

Fmax=30 × 22,500=675,000N (675kN)

A 1000 kN compression testing machine would be ideal.

 

3. Bending Testing Machine Selection

Bending tests evaluate the flexural strength of materials.

Key Formula for Three-Point Bending:

image.png

Where:

σf = Flexural stress (MPa)

F= Applied force (N)

L= Span length (mm)

b= Width of the specimen (mm)

h= Thickness of the specimen (mm)

Example: For a wooden beam with L=500mm, b=50mm, h=25mm, and requiring a stress of 10 MPa:

image.png

A 5 kN bending tester would be suitable.

4. Shear Testing Machine Selection

Shear tests determine the shear strength of materials.

Key Formula:

Fmax=τ × A

Where:

Fmax = Maximum shear force (N)

τ= Shear strength of the material (MPa)

A = Shear area (mm²)

Example: For an aluminum sheet with τ=90 MPa and A=200mm²:

Fmax=90×200=18,000N(18kN)

A 20 kN shear testing machine is recommended.

 

5. Peel Testing Machine Selection

Peel tests measure the adhesion strength between bonded materials.

Key Formula:

image.png

Where:

P= Peel strength (N/mm)

F= Measured force (N)

W= Width of the specimen (mm)

Example: For a tape with F=50N and W=25mm:

image.png

A peel testing machine with at least 5 N force capacity is required.

 

6. Tear Testing Machine Selection

Tear tests determine the resistance of a material to tearing forces.

Key Formula:

image.png

Where:

Ftear= Tear strength (N/mm)

F= Measured force (N)

t= Thickness of the specimen (mm)

Example: For a rubber sheet with F=100N and t=2mm:

image.png 

A tear testing machine with 100 N capacity is needed.

 

When selecting a testing machine, ensure that the maximum force capacity of the machine is at least 1.2 to 1.5 times the calculated force to account for safety margins and unexpected variations. Additionally, consider compliance with relevant test standards (ASTM, ISO, GB, EN, JIS) and machine features such as speed control, data acquisition, and test automation.

By using the above formulas and examples, engineers and manufacturers can accurately determine the appropriate testing machine specifications for their specific material and application requirements.